L'objet de cette annonce a été vendu le sam. 7 juin à 6:59.
An Introduction to Statistical Learning: with Applications in R (Springer Texts
Vendu
An Introduction to Statistical Learning: with Applications in R (Springer Texts
9,50 $US9,50 $US
sam., juin 07, 06:59 AMsam., juin 07, 06:59 AM
Vous en avez un à vendre?

An Introduction to Statistical Learning: with Applications in R (Springer Texts

9,50 $US
Environ13,05 $C
État :
Bon
    Expédition :
    7,16 $US (environ 9,84 $C) USPS Ground Advantage®.
    Lieu : Los Alamitos, California, États-Unis
    Livraison :
    Livraison prévue entre le lun. 11 août et le sam. 16 août à 94104
    Le délai de livraison est estimé en utilisant notre méthode exclusive, basée sur la proximité de l'acheteur du lieu où se trouve l'objet, le service d'expédition sélectionné, l'historique d'expédition du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, particulièrement lors de périodes achalandées.
    Renvois :
    Renvoi sous 30 jours. L'acheteur paie les frais de renvoi. Si vous utilisez une étiquette d'envoi eBay, son coût sera déduit du montant de votre remboursement.
    Paiements :
         Diners Club

    Magasinez en toute confiance

    Garantie de remboursement eBay
    Le vendeur assume l'entière responsabilité de cette annonce.
    Numéro de l'objet eBay :236127907656
    Dernière mise à jour : juin 01, 2025 02:58:22 HAEAfficher toutes les modificationsAfficher toutes les modifications

    Caractéristiques de l'objet

    État
    Bon: Un livre qui a été lu, mais qui est en bon état. La couverture présente des dommages infimes, ...
    Book Title
    An Introduction to Statistical Learning: with Applications in R (
    ISBN
    9781461471370

    À propos de ce produit

    Product Identifiers

    Publisher
    Springer New York
    ISBN-10
    1461471370
    ISBN-13
    9781461471370
    eBay Product ID (ePID)
    159944459

    Product Key Features

    Number of Pages
    Xiv, 426 Pages
    Publication Name
    Introduction to Statistical Learning : with Applications in R
    Language
    English
    Publication Year
    2017
    Subject
    Mathematical & Statistical Software, Intelligence (Ai) & Semantics, Probability & Statistics / General
    Type
    Textbook
    Subject Area
    Mathematics, Computers
    Author
    Trevor Hastie, Gareth James, Robert Tibshirani, Daniela Witten
    Series
    Springer Texts in Statistics Ser.
    Format
    Hardcover

    Dimensions

    Item Height
    0.9 in
    Item Weight
    35.8 Oz
    Item Length
    9.5 in
    Item Width
    6.4 in

    Additional Product Features

    Intended Audience
    Scholarly & Professional
    Dewey Edition
    23
    Reviews
    From the reviews: "The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I've been waiting for as it directly applies to my work in data science. Give the new state of this book, I'd classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you're serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013) "The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. ... it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. ... I am having a lot of fun playing with the code that goes with book. I am glad that this was written." (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014) "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014) , "Data and statistics are an increasingly important part of modern life, and nearly everyone would be better off with a deeper understanding of the tools that help explain our world. Even if you don't want to become a data analyst--which happens to be one of the fastest-growing jobs out there, just so you know--these books are invaluable guides to help explain what's going on." (Pocket, February 23, 2018), From the reviews: "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014) , "...Besides the obvious expertise of the authors in this field, another reason why the goal of the book is reached so successfully is the structure of each chapter. A detailed lab section follows at the end of each chapter which illustrates the application to example data sets in R accompanied by the annotated R code. The chapters close with conceptual and applied exercises. All data used in this book are either already in R or are provided in an R package accompanying the book and the code from the lab sessions is also available on the book's Web page...These two books ['An Introduction to Statistical Learning' and 'The Elements of Statistical Learning'] will go very well together, especially when teaching these methods to undergraduate students in statistics or computer science or to students from applied fields." International Statistical Review (2014), 82, 1, review by Klaus Nordhausen   "An Introduction to Statistical Learning (ISL)" by James, Witten, Hastie and Tibshirani is the "how to'' manual for statistical learning. Inspired by "The Elements of Statistical Learning'' (Hastie, Tibshirani and Friedman), this book provides clear and intuitive guidance on how to implement cutting edge statistical and machine learning methods. ISL makes modern methods accessible to a wide audience without requiring a background in Statistics or Computer Science. The authors give precise, practical explanations of what methods are available, and when to use them, including explicit R code. Anyone who wants to intelligently analyze complex data should own this book. Larry Wasserman , Professor, Department of Statistics and Machine Learning Department, Carnegie Mellon University, From the book reviews: "This book has a very strong advantage that sets it well ahead of the competition when it comes to learning about machine learning: it covers all of the necessary details that one has to know in order to apply or implement a machine learning algorithm in a real-world problem. Hence, this book will definitely be of interest to readers from many fields, ranging from computer science to business administration and marketing." (Charalambos Poullis, Computing Reviews, September, 2014) "The book provides a good introduction to R. The code for all the statistical methods introduced in the book is carefully explained. ... the book will certainly be useful to many people (including me). I will surely use many examples, labs and datasets from this book in my own lectures." (Pierre Alquier, Mathematical Reviews, July, 2014) "The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. ... it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. ... I am having a lot of fun playing with the code that goes with book. I am glad that this was written." (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014) "This book (ISL) is a great Master's level introduction to statistical learning: statistics for complex datasets. ... the homework problems in ISL are at a Master's level for students who want to learn how to use statistical learning methods to analyze data. ... ISL contains 12 very valuable R labs that show how to use many of the statistical learning methods with the R package ISLR ... ." (David Olive, Technometrics, Vol. 56 (2), May, 2014) "Written by four experts of the field, this book offers an excellent entry to statistical learning to a broad audience, including those without strong background in mathematics. ... The end-of-chapter exercises make the book an ideal text for both classroom learning and self-study. ... The book is suitable for anyone interested in using statistical learning tools to analyze data. It can be used as a textbook for advanced undergraduate and master's students in statistics or related quantitative fields." (Jianhua Z. Huang, Journal of Agricultural, Biological, and Environmental Statistics, Vol. 19, 2014) "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014)  "The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I've been waiting for as it directly applies to my work in data science. Give the new state of this book, I'd classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you're serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013), Poullis, Computing Reviews, September, 2014) "The book provides a good introduction to R. The code for all the statistical methods introduced in the book is carefully explained. ... the book will certainly be useful to many people (including me). I will surely use many examples, labs and datasets from this book in my own lectures." (Pierre Alquier, Mathematical Reviews, July, 2014) "The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. ... it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. ... I am having a lot of fun playing with the code that goes with book. I am glad that this was written." (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014) "This book (ISL) is a great Master's level introduction to statistical learning: statistics for complex datasets. ... the homework problems in ISL are at a Master's level for students who want to learn how to use statistical learning methods to analyze data. ... ISL contains 12 very valuable R labs that show how to use many of the statistical learning methods with the R package ISLR ... ." (David Olive, Technometrics, Vol. 56 (2), May, 2014) "Written by four experts of the field, this book offers an excellent entry to statistical learning to a broad audience, including those without strong background in mathematics. ... The end-of-chapter exercises make the book an ideal text for both classroom learning and self-study. ... The book is suitable for anyone interested in using statistical learning tools to analyze data. It can be used as a textbook for advanced undergraduate and master's students in statistics or related quantitative fields." (Jianhua Z. Huang, Journal of Agricultural, Biological, and Environmental Statistics, Vol. 19, 2014) "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014) "The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I've been waiting for as it directly applies to my work in data science. Give the new state of this book, I'd classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you're serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013), "An Introduction to Statistical Learning (ISL)" by James, Witten, Hastie and Tibshirani is the "how to'' manual for statistical learning. Inspired by "The Elements of Statistical Learning'' (Hastie, Tibshirani and Friedman), this book provides clear and intuitive guidance on how to implement cutting edge statistical and machine learning methods. ISL makes modern methods accessible to a wide audience without requiring a background in Statistics or Computer Science. The authors give precise, practical explanations of what methods are available, and when to use them, including explicit R code. Anyone who wants to intelligently analyze complex data should own this book. Larry Wasserman , Professor, Department of Statistics and Machine Learning Department, Carnegie Mellon University, From the book reviews: "The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. ... it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. ... I am having a lot of fun playing with the code that goes with book. I am glad that this was written." (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014) "This book (ISL) is a great Master's level introduction to statistical learning: statistics for complex datasets. ... the homework problems in ISL are at a Master's level for students who want to learn how to use statistical learning methods to analyze data. ... ISL contains 12 very valuable R labs that show how to use many of the statistical learning methods with the R package ISLR ... ." (David Olive, Technometrics, Vol. 56 (2), May, 2014) "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014)  "The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I've been waiting for as it directly applies to my work in data science. Give the new state of this book, I'd classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you're serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013), From the book reviews: "This book has a very strong advantage that sets it well ahead of the competition when it comes to learning about machine learning: it covers all of the necessary details that one has to know in order to apply or implement a machine learning algorithm in a real-world problem. Hence, this book will definitely be of interest to readers from many fields, ranging from computer science to business administration and marketing." (Charalambos Poullis, Computing Reviews, September, 2014) "The book provides a good introduction to R. The code for all the statistical methods introduced in the book is carefully explained. ... the book will certainly be useful to many people (including me). I will surely use many examples, labs and datasets from this book in my own lectures." (Pierre Alquier, Mathematical Reviews, July, 2014) "The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. ... it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. ... I am having a lot of fun playing with the code that goes with book. I am glad that this was written." (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014) "This book (ISL) is a great Master's level introduction to statistical learning: statistics for complex datasets. ... the homework problems in ISL are at a Master's level for students who want to learn how to use statistical learning methods to analyze data. ... ISL contains 12 very valuable R labs that show how to use many of the statistical learning methods with the R package ISLR ... ." (David Olive, Technometrics, Vol. 56 (2), May, 2014) "It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. ... the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications." (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014) "The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. ... The style is suitable for undergraduates and researchers ... and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter." (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014)  "The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I've been waiting for as it directly applies to my work in data science. Give the new state of this book, I'd classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you're serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013)
    TitleLeading
    An
    Series Volume Number
    103
    Number of Volumes
    1 vol.
    Illustrated
    Yes
    Dewey Decimal
    519.5
    Table Of Content
    Introduction.- Statistical Learning.- Linear Regression.- Classification.- Resampling Methods.- Linear Model Selection and Regularization.- Moving Beyond Linearity.- Tree-Based Methods.- Support Vector Machines.- Unsupervised Learning.- Index.
    Synopsis
    An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra., This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering., An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
    LC Classification Number
    QA276-280

    Description de l'objet du vendeur

    À propos de ce vendeur

    The Orange County Vault

    100% d'évaluations positives399 objets vendus

    Membre depuis : juil. 2002
    Répond généralement en 24 heures
    Welcome to The Orange County Vault, your ultimate treasure trove for all things unique and collectible! Nestled in the heart of the community, we specialize in a diverse range of categories that cater ...
    Plus
    Visiter la BoutiqueContacter

    Évaluations détaillées du vendeur

    Moyenne au cours des 12 derniers mois
    Qualité de la description
    4.9
    Justesse des frais d'expédition
    4.7
    Rapidité de l'expédition
    5.0
    Communication
    5.0

    Évaluations comme vendeur (154)

    Toutes les évaluations
    Positives
    Neutres
    Négatives

    Évaluations et avis sur le produit

    5.0
    12 évaluations du produit
    • 12 utilisateurs ont attribué une note de 5 étoiles sur 5
    • 0 utilisateurs ont attribué une note de 4 étoiles sur 5
    • 0 utilisateurs ont attribué une note de 3 étoiles sur 5
    • 0 utilisateurs ont attribué une note de 2 étoiles sur 5
    • 0 utilisateurs ont attribué une note de 1 étoiles sur 5

    Would recommend

    Good value

    Compelling content

    Avis les plus pertinents

    • One of the best introductory books on machine learning

      This is one of the best introductory books on machine learning, including regression, classification, resampling, clustering, support vector machines and tree-based methods.

      Achat vérifié : OuiÉtat : NeufVendu par : xhnv8yalqri@deleted

    • A great onramp to Stats and Machine Learning

      I got turned onto the ISLR by DataRobot support personnel who said it described the theoretical underpinning of the models DataRobot vets/uses. I found it readable, approachable and far better organized than the materials of various MOOCs I took which covered the same material. I have a far better grasp of the material now than I did before reading.

      Achat vérifié : OuiÉtat : NeufVendu par : rI9ybzIeT8O@Deleted

    • Comprehensive and technical enough

      I am learning data science and i have finished the first three chapters of this book. It is easier to understand than some more technical books that people read in their PhD programs. At the same time it went deeper than Coursera courses and some o’Reilly books I read

      Achat vérifié : OuiÉtat : NeufVendu par : crestview-stor

    • great intro book to the topic

      excellent intro book, well written and easy to read through if you have undergrad math/eng knowledge

      Achat vérifié : OuiÉtat : NeufVendu par : crestview-stor

    • Good new book

      What else can I say. Arrived timely

      Achat vérifié : OuiÉtat : NeufVendu par : rI9ybzIeT8O@Deleted