Vous en avez un à vendre?

Méthodes bayésiennes pour les sciences sociales et comportementales couverture rigide

12,99 $US
Environ17,91 $C
État :
Très bon
Ayez l'esprit tranquille. Renvois acceptés.
Expédition :
5,22 $US (environ 7,20 $C) USPS Media MailTM.
Lieu : Jackson, Michigan, États-Unis
Livraison :
Livraison prévue entre le ven. 8 août et le jeu. 14 août à 94104
Le délai de livraison est estimé en utilisant notre méthode exclusive, basée sur la proximité de l'acheteur du lieu où se trouve l'objet, le service d'expédition sélectionné, l'historique d'expédition du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, particulièrement lors de périodes achalandées.
Renvois :
Renvoi sous 14 jours. L'acheteur paie les frais de renvoi. Si vous utilisez une étiquette d'envoi eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
     Diners Club

Magasinez en toute confiance

Garantie de remboursement eBay
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :157050357924

Caractéristiques de l'objet

État
Très bon: Un livre qui n’a pas l’air neuf et qui a été lu, mais qui est en excellent état. La ...
Book Title
Bayesian Methods for the Social and Behavioral Sciences Hardcover
Features
Ex-Library
ISBN
9781584882886

À propos de ce produit

Product Identifiers

Publisher
CRC Press LLC
ISBN-10
1584882883
ISBN-13
9781584882886
eBay Product ID (ePID)
2275850

Product Key Features

Number of Pages
480 Pages
Publication Name
Bayesian Methods for the Social and Behavioral Sciences
Language
English
Subject
Probability & Statistics / General, Statistics, Probability & Statistics / Bayesian Analysis
Publication Year
2002
Type
Textbook
Subject Area
Mathematics, Social Science
Author
Jeff Gill
Series
Chapman and Hall/Crc Statistics in the Social and Behavioral Sciences Ser.
Format
Hardcover

Dimensions

Item Height
1.2 in
Item Weight
27.7 Oz
Item Length
9.6 in
Item Width
6.4 in

Additional Product Features

Intended Audience
College Audience
LCCN
2002-024629
Dewey Edition
21
Illustrated
Yes
Dewey Decimal
519.5/42
Table Of Content
BACKGROUND AND INTRODUCTION Introduction Motivation and Justification Why Are We Uncertain about Probability Bayes Law Bayes Law and Conditional Inference Historical Comments The Scientific Process in Our Social Sciences LIKELIHOOD INFERENCE AND THE GENERALIZED LINEAR MODEL Motivation Likelihood Theory and Estimation The Generalized Linear Model Numerical Maximum Likelihood Advanced Topics THE BAYESIAN SETUP The Basic Framework Context and Controversy Rivals for Power Example: The Timing of Polls THE NORMAL AND STUDENT'S-T MODELS Why Be Normal The Normal Model with Variance Known The Normal Model with Mean Known Multivariate Normal Model When m and S Are Both Unknown Final Normal Comments The Students-t Model Advanced Topics THE BAYESIAN PRIOR A Prior Discussion of Priors A Plethora of Priors ASSESSING MODEL QUALITY Motivation The Bayesian Linear Regression Model Example: The 2000 US Election in Palm Beach County Sensitivity Analysis Robustness Evaluation Comparing Data to the Posterior Predictive Distribution Concluding Remarks Advanced Topics BAYESIAN HYPOTHESIS TESTING AND THE BAYES FACTOR Motivation Bayesian Inference and Hypothesis Testing The Bayes Factor as Evidence The Bayesian Information Criterion Things about the Bayes Factor That Do Not Work Concluding Remarks Advanced Topics BAYESIAN POSTERIOR SIMULATION Background Basic Monte Carlo Integration Rejection Sampling Classical Numerical Integration Importance Sampling/Sampling Importance Resampling Mode Finding and the EM Algorithm Concluding Remarks Advanced Topics BASICS OF MARKOV CHAIN MONTE CARLO Who is Markov and What is He Doing with Chains? General Properties of Markov Chains The Gibbs Sampler The Metropolis-Hastings Algorithm Data Augmentation Practical Considerations and Admonitions Historical Comments BAYESIAN HIERARCHICAL MODELS Introduction to Hierarchical Models A Poisson-Gamma Hierarchical Model The Role of Priors and Hyperpriors Specifying Hierarchical Models Exchangeability Computational Issues Advanced Topics PRACTICAL MARKOV CHAIN MONTE CARLO The Problem of Assessing Convergence Model Checking and Assessment Improving Mixing and Convergence Hybrid Markov Chains Answers to the Really Practical Questions Advanced Topics Each chapter also contains References and Exercises
Synopsis
This is the first book to provide a comprehensive but accessible introduction to Bayesian data analysis designed specifically for those in the social and behavioral sciences. Requiring few prerequisites, it first introduces Bayesian statistics and inference, then provides explicit guidance on assessing model quality and model fit, and finally introduces hierarchical models within the Bayesian context, which leads naturally to Markov Chain Monte Carlo techniques and other numerical methods. The author emphasizes practical computing issues, includes specific details for Bayesian model building and testing, and uses the freely available R and BUGS software for examples and exercise problems., Despite increasing interest in Bayesian approaches, especially across the social sciences, it has been virtually impossible to find a text that introduces Bayesian data analysis in a manner accessible to social science students. The Bayesian paradigm is ideally suited to the type of data analysis they will have to perform, but the associated mathematics can be daunting. Bayesian Methods: A Social and Behavioral Sciences Approach presents the basic principles of Bayesian statistics in a treatment designed specifically for students in the social sciences and related fields. Requiring few prerequisites, it first introduces Bayesian statistics and inference with detailed descriptions of setting up a probability model, specifying prior distributions, calculating a posterior distribution, and describing the results. This is followed by explicit guidance on assessing model quality and model fit using various diagnostic techniques and empirical summaries. Finally, it introduces hierarchical models within the Bayesian context, which leads naturally to Markov Chain Monte Carlo computing techniques and other numerical methods. The author emphasizes practical computing issues, includes specific details for Bayesian model building and testing, and uses the freely available R and BUGS software for examples and exercise problems. The result is an eminently practical text that is comprehensive, rigorous, and ideally suited to teaching future empirical social scientists.
LC Classification Number
QA279.5.G55 2002

Description de l'objet du vendeur

À propos de ce vendeur

our-unique-finds

100% d'évaluations positives242 objets vendus

Membre depuis : févr. 2004
Autres objets du vendeurContacter

Évaluations détaillées du vendeur

Moyenne au cours des 12 derniers mois
Qualité de la description
5.0
Justesse des frais d'expédition
4.9
Rapidité de l'expédition
5.0
Communication
4.9

Évaluations comme vendeur (81)

Toutes les évaluations
Positives
Neutres
Négatives
  • r***o (13)- Évaluation laissée par l'acheteur.
    Six derniers mois
    Achat vérifié
    Excellent condition, exactly as expected. Well packaged, shipped quickly.
  • _***l (9687)- Évaluation laissée par l'acheteur.
    Six derniers mois
    Achat vérifié
    Great seller! Very pleased with item and shipping! AAA+++
  • g***o (1279)- Évaluation laissée par l'acheteur.
    Six derniers mois
    Achat vérifié
    Quick shipment and packaged well. Thank you!