L'objet de cette annonce a été vendu le mar. 22 juil. à 7:36.
Mathématiques pour l'apprentissage profond : ce qu'il faut savoir pour comprendre les réseaux de neurones
Vendu
Mathématiques pour l'apprentissage profond : ce qu'il faut savoir pour comprendre les réseaux de neurones
21,74 $US21,74 $US
mar., juil. 22, 07:36 AMmar., juil. 22, 07:36 AM
Vous en avez un à vendre?

Mathématiques pour l'apprentissage profond : ce qu'il faut savoir pour comprendre les réseaux de neurones

21,74 $US
Environ29,97 $C
État :
Acceptable
    Expédition :
    Sans frais Standard Shipping.
    Lieu : Fort Lauderdale, Florida, États-Unis
    Livraison :
    Livraison prévue entre le jeu. 7 août et le lun. 11 août à 94104
    Le délai de livraison est estimé en utilisant notre méthode exclusive, basée sur la proximité de l'acheteur du lieu où se trouve l'objet, le service d'expédition sélectionné, l'historique d'expédition du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, particulièrement lors de périodes achalandées.
    Renvois :
    Renvois refusés.
    Paiements :
         Diners Club

    Magasinez en toute confiance

    Garantie de remboursement eBay
    Le vendeur assume l'entière responsabilité de cette annonce.
    Numéro de l'objet eBay :127239657961
    Dernière mise à jour : juil. 21, 2025 14:20:22 HAEAfficher toutes les modificationsAfficher toutes les modifications

    Tous les bénéfices nets sont versés à Goodwill Industries of South Florida

    Goodwill Industries of South Florida trains and employs people with physical and mental barriers
    • Annonce eBay for Charity. En savoir plus
    • Les revenus de cette vente seront versés à un organisme sans but lucratif partenaire vérifié.

    Caractéristiques de l'objet

    État
    Acceptable: Un livre présentant des traces d'usure apparentes. Sa couverture peut être endommagée, ...
    Release Year
    2021
    Book Title
    Math for Deep Learning: What You Need to Know to Understand Ne...
    ISBN
    9781718501904

    À propos de ce produit

    Product Identifiers

    Publisher
    No Starch Press, Incorporated
    ISBN-10
    1718501900
    ISBN-13
    9781718501904
    eBay Product ID (ePID)
    27050380222

    Product Key Features

    Number of Pages
    344 Pages
    Language
    English
    Publication Name
    Math for Deep Learning : What You Need to Know to Understand Neural Networks
    Publication Year
    2021
    Subject
    Neural Networks, General, Calculus
    Type
    Textbook
    Subject Area
    Mathematics, Computers, Science
    Author
    Ronald T. Kneusel
    Format
    Trade Paperback

    Dimensions

    Item Height
    0.9 in
    Item Weight
    23.2 Oz
    Item Length
    9.1 in
    Item Width
    7 in

    Additional Product Features

    Intended Audience
    Trade
    LCCN
    2021-939724
    Reviews
    "What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach." -Ed Scott, Ph.D., Solutions Architect & IT Enthusiast, "An excellent resource for anyone looking to gain a solid foundation in the mathematics underlying deep learning algorithms. The book is accessible, well-organized, and provides clear explanations and practical examples of key mathematical concepts. I highly recommend it to anyone interested in this field." --Daniel Gutierrez, insideBIGDATA "Ronald T. Kneusel has written a handy and compact guide to the mathematics of deep learning. It will be a well-worn reference for equations and algorithms for the student, scientist, and practitioner of neural networks and machine learning. Complete with equations, figures and even sample code in Python, this book is a wonderful mathematical introduction for the reader." --David S. Mazel, Senior Engineer, Regulus-Group "What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach." --Ed Scott, Ph.D., Solutions Architect & IT Enthusiast
    Dewey Edition
    23
    Illustrated
    Yes
    Dewey Decimal
    006.310151
    Table Of Content
    Introduction Chapter 1: Setting the Stage Chapter 2: Probability Chapter 3: More Probability Chapter 4: Statistics Chapter 5: Linear Algebra Chapter 6: More Linear Algebra Chapter 7: Differential Calculus Chapter 8: Matrix Calculus Chapter 9: Data Flow in Neural Networks Chapter 10: Backpropagation Chapter 11: Gradient Descent Appendix: Going Further
    Synopsis
    Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning , you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta., To truly understand the power of deep learning, you need to grasp the mathematical concepts that make it tick. Math for Deep Learning will give you a working knowledge of probability, statistics, linear algebra, and differential calculus-the essential math subfields required to practice deep learning successfully. Each subfield is explained with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. The book begins with fundamentals such as Bayes' theorem before progressing to more advanced concepts like training neural networks using vectors, matrices, and derivatives of functions. You'll then put all this math to use as you explore and implement backpropagation and gradient descent- the foundational algorithms that have enabled the Al revolution. You'll learn how to: Use statistics to understand datasets and evaluate models, Apply the rules of probability, Manipulate vectors and matrices to move data through a neural network, Use linear algebra to implement principal component analysis and singular value decomposition, Implement gradient-based optimization techniques like RMSprop, Adagrad, and Adadelta, The core math concepts presented in Math for Deep Learning will give you the foundation you need to unlock the potential of deep learning in your own applications. Book jacket., With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
    LC Classification Number
    Q325.5

    Description de l'objet du vendeur

    À propos de ce vendeur

    Goodwill Industries South Florida

    99,2% d'évaluations positives619K objets vendus

    Membre depuis : janv. 2011
    Welcome to my eBay Store. Please add me to your list of favorite sellers and visit often. Thank you for your business.
    Visiter la BoutiqueContacter

    Évaluations détaillées du vendeur

    Moyenne au cours des 12 derniers mois
    Qualité de la description
    4.9
    Justesse des frais d'expédition
    5.0
    Rapidité de l'expédition
    5.0
    Communication
    5.0

    Évaluations comme vendeur (191 234)

    Toutes les évaluations
    Positives
    Neutres
    Négatives
      • s***e (1227)- Évaluation laissée par l'acheteur.
        Dernier mois
        Achat vérifié
        Fast shipping! Excellent communication! Item as described. Was surprised that the book has no highlighted pages or underlined pages. A+ Reseller! Will buy again!
      Afficher toutes les évaluations